Article 8420

Title of the article

SYSTEM FOR TROUBLE-FREE CONTROL OF A ROBOTS GROUP 

Authors

Bereznev Valentin Alexandrovich, doctor of physical and mathematical sciences, senjor reseacher, Robot control center, Federal reseach center "Computer Science and Management" of the Russian Academy of Sciences (40 Vavilov street, Moscow, Russia), E-mail: va_bereznev@mail.ru 

Index UDK

519.71 

DOI

10.21685/2307-4205-2020-4-8 

Abstract

The problem of simultaneous control of robots group is considered. For each of robots the start and end points of the path are set. Feature the problem is that it is impossible to move robots in a straight line from the starting point to the end point due to the presence of obstacles. It is assumed that obstacles have a circular shape. The presence of obstacles makes it very problematic the use of classical methods of optimal control synthesis or mathematical programming due to non-convexity region of admissible trajectories of the robots. The proposed approach is based on is the segregation of the desired trajectories of robots in certain areas each of which has no obstacles.
Search for different options such as the trajectory is based on graph theory, and the movement on each of the sections without obstacles it is reduced to the problem of optimal control synthesizing with phase restrictions. In addition, an algorithm, eliminates the possibility of robots colliding while driving is proposed. 

Key words

optimal control problem, graph theory, the problem of the shortest path, control of the robot 

 Download PDF
References

1. Pontryagin L. S., Boltyanskiy V. G., Gamkrelidze R. V., Mishchenko E. F. Matematicheskaya teoriya optimal'nykh protsessov [Mathematical theory of optimal processes]. Moscow: Nauka, 1983, 393 p. [In Russian]
2. Boltyanskiy V. G. Matematicheskie metody optimal'nogo upravleniya [Mathematical methods of optimal control]. Moscows: Nauka, 1968, 408 p. [In Russian]
3. Arutyunov A. V., Karamzin D. Yu., Pereyra F. L., Chernikova N. Yu. Differentsial'nye uravneniya [Differential equations]. 2018, vol. 54, no. 8, pp. 1100–1118. [In Russian]
4. Karamzin D. Yu. Voprosy teorii bezopasnosti i ustoychivosti system [Questions of the theory of security and stability of systems]. 2018, no. 20, pp. 46–61. [In Russian]
5. Karamzin D. Yu., de Oliveira V. A., Pereira F. L., Silva G. N. Intelligent Systems 2018: Proceedings of the 13-th International Symposium. 2018, pp. 478–487.
6. Karmanov V. G. Matematicheskoe programmirovanie [Mathematical programming]. Moscow: Nauka, 2000, 264 p. [In Russian]
7. Izmailov A. F., Solodov M. V. Chislennye metody optimizatsii [Numerical optimization methods]. Moscow: Nauka, 2003. [In Russian]
8. Dar'ina A. N. Voprosy teorii bezopasnosti i ustoychivosti system [Questions of the theory of security and stability of systems]. 2018, no. 20, pp. 159–166. [In Russian]
9. Daryina A. N., Izmailov A. F., Solodov M. V. SIAM J. Optimization. 2004, vol. 15, pp. 109–120.
10. Prokop'ev I. V. Voprosy teorii bezopasnosti i ustoychivosti system [Questions of the theory of security and stability of systems]. 2018, no. 20, pp. 18–27. [In Russian]
11. Betskov A. V., Prokopyev I. V., Ilinbaev A. E. Intelligent Systems 2018: proceedings of the 13-th International Symposium. 2018, pp. 695–701.
12. Dijkstra E. W. Numer. Math. Springer Science + Business media. 1959, vol. 1, no. 1, pp. 269–271.
13. Bereznev V. A., Diveev A. I. Nadezhnost' i kachestvo slozhnykh system [Reliability and quality of complex systems]. 2019, no. 3 (27), pp. 17–25. [In Russian]

 

Дата создания: 29.01.2021 11:13
Дата обновления: 29.01.2021 13:40